Die Kristallstruktur von Pb₃GeAl₁₀O₂₀ (Pb₃SiAl₁₀O₂₀)

Von

Hannelore Vinek, H. Völlenkle und H. Nowotny

Aus dem Institut für Physikalische Chemie der Universität Wien

Mit 2 Abbildungen

(Eingegangen am 10. November 1969)

Die Kristallstruktur von Pb₃GeAl₁₀O₂₀ und der dazu isotypen Verbindung Pb₃SiAl₁₀O₂₀ wird bestimmt (R = 0,16). Die Gitterparameter der monoklinen, pseudorhombischen Zelle (Raumgruppe I 2/m— C_{2h}^3 ; Z = 2) sind: a = 14,39; b = 11,44; c = 5,004 Å und $\beta = 90,0$ für Pb₃GeAl₁₀O₂₀ und: a = 14,34; b = 11,39; c = 4,96 und $\beta = 90,0$ für Pb₃SiAl₁₀O₂₀. Das Gerüst besteht aus AlO₄-Tetraedern und AlO₆-Oktaedern, wobei Germanium und Aluminium statistisch über die Plätze 2b, 4h, 8j und 8 j verteilt sind. Die Bleiatome sitzen in Kanälen parallel zu [001] in 2a und 4i. Die verschiedene Umgebung der Pb-Atome auf den beiden Plätzen wird diskutiert.

The Crystal Structure of Pb₃GeAl₁₀O₂₀ (Pb₃SiAl₁₀O₂₀)

The crystal structure of Pb₃GeAl₁₀O₂₀ and Pb₃SiAl₁₀O₂₀, an isotypic compound, has been determined (R = 0.16). The lattice parameters were found to be: a = 14.39 Å; b = 11.44 Å; c = 5.004 Å, and $\beta = 90.0$ for Pb₃GeAl₁₀O₂₀ and: a = 14.34 Å; b = 11.39 Å; c = 4.96 Å and $\beta = 90.0$ for Pb₃SiAl₁₀O₂₀; Z = 2, space group I 2/m—C³_{2h}. The network consists of AlO₄ tetrahedra and AlO₆ octahedra; germanium atoms are randomly distributed at the positions of the Al-atoms 2b, 4h, 8j, and 8j. The lead atoms occupy the positions 2a and 4i within channels in the network parallel to [001]. The different environment of the two kinds of lead atoms will be discussed.

Bei Untersuchungen im System: PbO—Al₂O₃—GeO₂ konnte die Existenz mehrerer quaternärer Verbindungen festgestellt werden. Von diesen Oxiden erwies sich eine Verbindung als isotyp mit dem entsprechenden Si-haltigen Pb-Aluminat. Die letztgenannte Verbindung wurde bereits von *Geller* und *Bunting*¹ beschrieben, jedoch nicht durch röntgenographische Daten charakterisiert. Die genannten Autoren finden

¹ R. F. Geller und E. N. Bunting, J. Research NBS 31, 255 (1943).

die besagte Kristallart bei Proben der Zusammensetzung 54 Mol% PbO, 17 Mol% SiO₂ und 28 Mol% Al₂O₃.

Es gelang unschwer, diese Verbindung aus den Komponenten PbO, SiO₂ und Al₂O₃ zu synthetisieren, doch zeigte sich, daß Ansätze mit 40 Mol% PbO, 20 Mol% SiO₂ und 40 Mol% Al₂O₃ zu einheitlicheren Produkten führten. Dies gilt auch für die analoge Ge-haltige Verbindung, die z. B. bei einer Zusammensetzung 35 Mol% PbO, 15 Mol% GeO₂ und 50 Mol% Al₂O₃ in nahezu homogener Form gewonnen wurde. Zudem ließ sich die Isotypie der beiden Oxide auf Grund von Pulveraufnahmen sofort erkennen. Die Kristallart ist demnach erheblich Al₂O₃-reicher als das von *Geller* und *Bunting* angegebene Oxid; diese Autoren haben im übrigen das Al₂O₃-reiche Gebiet nicht näher untersucht. Die Zuordnung ist auch deshalb schwierig, weil sich die besagte Verbindung in den Systemen: PbO—GeO₂—Al₂O₃ und PbO—SiO₂—Al₂O₃ peritektisch bildet.

Zur Herstellung von Einkristallen wurde wegen der peritektischen Bildung von PbO-reichen Schmelzen (75 Mol% PbO, 15 Mol% GeO₂ und 10 Mol% Al₂O₃) ausgegangen. Die aus der PbO-reichen Matrix isolierten Einkristalle entsprachen in der Zusammensetzung Sinterproben eines Ansatzes von 3 PbO \cdot GeO₂ \cdot 5 Al₂O₃.

Einkristall-, Pulver- und Diffraktometeraufnahmen führen auf eine monokline, pseudorhombische Elementarzelle mit zwei Formelgewichten Pb₃GeAl₁₀O₂₀. Die Gitterparameter, auch jene für das isotype Pb₃SiAl₁₀O₂₀ gehen aus Tab. 1 hervor.

Tabelle 1. Gitterparameter und Dichte von $Pb_3GeAl_{10}O_{20}$ und $Pb_3SiAl_{10}O_{20}$

Verbdg.	<i>a</i> , Å	b, Å	<i>c</i> , Å	β,°	gem.	ber.
$Pb_3GeAl_{10}O_{20}$	14,39	11,44	5,004	90,0	5,30	5,37
$Pb_3SiAl_{10}O_{20}$	14,34	11,39	4,96	90,0		5,06

Die Abweichung gegenüber der orthorhombischen Symmetrie macht sich lediglich in den verschiedenen Intensitäten (hkl) und $(\hbar kl)$ bemerkbar. Vernachlässigt man zunächst diese Abweichung, so führen die Auslöschungen: (hkl) mit h + k + l = 2 n, (hk0) mit h + k = 2 n, $(\hbar 0l)$ mit h + l = 2 n und (0kl) mit k + l = 2 n zur Raumgruppe Immm. Zudem weist die ähnliche Intensitätsabfolge für (hk0) und (hk2) auf Werte der z-Parameter von etwa 0 und 0,5 hin. Die sechs Pb-Atome lassen sich durch eine Pattersonprojektion auf (xy0) sofort lokalisieren:

2 Pb in 2a 000
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$
4 Pb in 4e x00 \overline{x} 00
 $\frac{1}{2}$ + x $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ - x $\frac{1}{2}$ $\frac{1}{2}$ (x = 0,279).

	(hkl)	F_0	F _c	(hkl)	F_0	F _c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(020)	305	335	(660)	84	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(040)	286	299	(710)	393	401
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(060)	412	433	(730)	280	271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(080)	393	445	(750)	189	200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0100)	230	239	(770)	330	366
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0120)	146	139	(790)	221	191
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0140)	266	269	(7110)	193	171
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(200)	83	37	(7130)	160	177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(400)	163	150	(860)	130	115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(600)	85	59	(910)	161	136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(800)	214	226	(950)	130	127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1000)	161	140	(970)	155	108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1400)	368	342	(990)	136	- 113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(130)	87	82	(1020)	233	232
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(170)	119	95	(1040)	287	259
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(220)	- 78	72	(1060)	155	149
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(240)	57	54	(1080)	137	145
$ \begin{array}{ccccccccccccccccccccccccccccccc$	(260)	135	117	(10100)	161	155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(310)	176	155	(10120)	117	136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(330)	301	355	(1110)	178	163
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(350)	272	340	(1130)	272	227
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(390)	228	185	(1150)	254	253
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3110)	217	193	(1190)	166	169
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3130)	77	95	(11110)	140	157
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(420)	353	430	(1240)	99	119
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(440)	238	245	(12100)	108	119
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(460)	218	236	(1420)	194	195
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(480)	208	217	(1440)	175	155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4100)	180	159	(1460)	194	215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4120)	210	191	(1480)	215	235
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(510)	182	177	(1620)	116	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(530)	-142	-122	(1640)	106	85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(550)	— 104	- 72	(1660)	60	82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(570)	- 198	-216	(1730)	153	161
(620) 64 55 (1820) 150 168	(5130)	71	113	(1750)	98	99
	(620)	64	55	(1820)	150	168

Tabelle 2. Strukturfaktoren (Raumgruppe I $2/{\rm m}$) für (hk0)-Reflexe von ${\rm Pb_3GeAl_{10}O_{20}}$

Man erhält damit nach mehreren Cyclen nach der "least squares" Methode einen R-Wert von 0,24. Eine zweidimensionale Fourier-Synthese zur Ermittlung der x- und y-Parameter der Al- und Ge-Atome wurde ebenfalls unter Annahme einer orthorhombischen Symmetrie gerechnet. Dabei zeigt sich, daß die Ge-Atome nicht von den Al-Atomen unterschieden werden können, was eine statistische Verteilung der beiden Atomsorten für die weitere Rechnung nahelegt. Zur Ermittlung der z-Parameter wurde schließlich eine dreidimensionale Fourier-Synthese durchgeführt, wobei nunmehr zur monoklinen Symmetrie (Untergruppe I 2/m der rhombischen Zelle Immm) übergangen wird. Die so erhaltenen z-Parameter der Kationen weichen nur sehr wenig von Null ab, was bedeutet, daß die Kationen praktisch der orthorhombischen Symmetrie gehorchen. Die Abweichung davon geht also auf die Anionen zurück.

Auch in der dreidimensionalen Fourier-Synthese findet man keinen Hinweis für eine spezielle Position der Germanium-Atome. Die Sauerstofflagen ergaben sich aus einer dreidimensionalen Differenz-Fourier-Synthese, gemäß ($F_0 - F_c$ [Pb₃GeAl₁₀]) und wurden durch "least squares" noch verfeinert. Damit wird ein *R*-Wert von 0,16 für alle beobachteten Reflexe erhalten. In Tab. 2 sind die beobachteten und berechneten Strukturamplituden für den Äquator (hk0) zusammengestellt. Ein relativ hoher *R*-Wert wird bei Pb-Verbindungen häufig beobachtet; dazu kommt noch, daß hier keine Absorptionskorrektur berücksichtigt wurde. Die Atomparameter gehen aus Tab. 3 hervor.

Atom	Lage	x	y	z	В
 Pb-1	2a	0,0	0,0	0,0	2,26
Pb-2	4 i	0,2847(4)	0,0	0,0315(14)	0,52
Al(Ge)-1	$2\mathrm{b}$	0,0	0,5	0,0	0,96
Al(Ge)-2	4h	0,0	0,6326(27)	0,5	1,31
Al(Ge)-3	8j	0,3548(22)	0,3603(17)	0,9979(70)	1,37
Al(Ge)-4	8j	0,1284(16)	0,2905(16)	0,0299(57)	0,76
0-1	4i	0,4387(72)	0,0	0,1599(240)	1,02
O-2	4 i	0,8983(71)	0,0	0,5889(210)	0,64
O-3	8 j	0,2411(59)	0,3572(63)	0,0772(193)	2,09
0-4	8 j	0,4188(50)	0,2485(59)	0,1637(168)	1,56
0-5	8 j	0,8643(59)	0,1445(65)	0,1190(180)	2,05
O-6	8j	0,9330(45)	0,3860(47)	0,1650(145)	0,42

Tabelle 3. Atomparameter und Temperaturfaktoren für $\mathrm{Pb_3GeAl_{10}O_{20}}$

In Klammer: Unsicherheit der letzten Stellen.

Zum Beweis der Isotypie von Pb₃GeAl₁₀O₂₀ und Pb₃SiAl₁₀O₂₀ ist die Auswertung einer Pulveraufnahme der Si-haltigen Verbindung in Tab. 4 wiedergegeben.

Diskussion der Struktur von Pb₃GeAl₁₀O₂₀

Wie Abb. 1a erkennen läßt, liegt eine Gerüststruktur vor, die aus der Verknüpfung von tetraedrischen $Al(Ge)O_4$ und oktaedrischen $Al(Ge)O_6$ -

(hkl)	$\sin^2 \theta \cdot 10^3$ ber.	$\sin^2 \theta \cdot 10^3$ beob.	Int. beob.	Int. _{ber} .
(110)	7.47			3.4
(200)	11.56			2.7
(020)	18,32	17,72	sst	91,8
(011)	28,70	28,33	sst	100,0
(220)	29.88	29.42	s	5,0
(310)	30.59	29.56	\mathbf{mst}	28.9
$\overline{(211)}$	40,26)			(6.8
(211)	40.26	40,00	s	11.1
(130)	44,11	44,88	s	4,0
$(\overline{1}21)$	45,33)	15.00		(4, 6)
(121)	45,33	45,02	S	10,1
(400)	46,81	46,24	\mathbf{m}	` 9,7
$(\overline{3}01)$	50,13)	50.00		(12,5
(301)	50,13	50,60	m	24,1
(420)	$64,56^{'}$	64,25	\mathbf{st}	63,1
(031)	65,34	65,25	\mathbf{sst}	86,4
(330)	67,23	67,21	\mathbf{st}	44,2
$(\bar{3}21)$	68,45	60.40	-4	(30,7
(321)	68,45	68,40	SU	63,4
(040)	$73,28^{'}$	73,28	\mathbf{mst}	`16,6
$(\bar{4}11)$	74,94	74 14	aat	(5 4 ,1
(411)	74,94∫	14,14	SSU	${23,4}$
$(\overline{2}31)$	76,28	76 07	220	10,7
(231)	76,28∫	70,07	111	10,9
(510)	76,90	76,81	ms	7,7
(240)	84,84			0,5
$(\overline{5}01)$	96,37			(0,3
(501)	96,37	96,42	\mathbf{mst}	{ 4,0
(002)	96,48)			(33,8
(141)	100,29	100.26	me	∫10,7
(141)	100,295	100,20	111.5	<u>)</u> 0,0
(112)	103,95			(4,9
(112)	103,95	104,53	s	$\{0,1$
(600)	104,04)			(0,2)
(202)	108,08	108.88	ms	∫5,9
(202)	108,08	100,00	1115	\0,1
(431)	111,58	110.99	m	∫9,0
(431)	111,58	110,00		լ9,5
(530)	113,47	113,26	s	2,4
(150)	114,50			0,3
(521)	114,69	114.74	\mathbf{mst}	0,1
(321)	114,69			0,5
(440)	114,80	110.00		(20,4
(440)	119,72	119,23	\mathbf{m}	12,6
(020) (944)	122,30			0,8
(341) (241)	123,41	123.33	\mathbf{mst}	{ ^{20,4}
(341)	123,41}	,		(5,5

Tabelle 4. Pulveraufnahme und Intensitätsberechnung für $Pb_{2}SiAl_{10}O_{20}$

(hkl)	$\sin^2 \theta \cdot 10^3$ ber.	$\sin^2 \theta \cdot 10^3$ beob.	Int. beob.	Int. ber.
(222)	126,36)	195 50		(2,1
(222)	126,36	140,19	8	(0,0
$(\bar{3}21)$	127,01	197 98	702 5	∫`3,8
(321)	127,01	127,20	ms	<u></u> 11,1
(611)	ز 132,74			(0,3
(611)	132,74			12,3
(051)	138,62	139,00	m	13,7
(350)	140,51			[16,8
(132)	140,59	140,01	\mathbf{mst}	{ 7,8
(132)	140,59)	,		l 0,7
(402)	142,72	110 76	100.0	(3,5
(402)	142,72	142,70	ms	{4,0
(710)	146,19	145,88	\mathbf{mst}	24,7
$(\bar{2}51)$	(150,18	150 77	~	∫4,1
(251)	150,18	150,77	8	ĺ0,7
$(\bar{4}22)$	161,04 j	161 98	m	j18,2
(422)	161,04	101,20	111	(7,3
(332)	163,71j	169.05	mat	<u> </u>
(332)	163,71	103,05	msu	16,2
(060)	164,88	164,78	m	11,7
(701)	165,73	165 91	m	(5,7
(701)	165,73∫	105,21	111	[8,8
(631)	169,38			0,7
(631)	169,38			1,6
(541)	169,65	170,40	\mathbf{ms}	{0,0
(541)	169,65			0,6
(042)	169,76			18,6
$(\bar{5}12)$	173,31	173 29	q	∫0,2
(512)	173,31	115,25	6	$\left(5,1\right)$
(260)	176,44			1,3
(640)	177,32			0,0
(242)	181,32	181 29	s	∫0,9
(242)	181,32∫	101,20	5	1,0
(730)	182,83	182,90	\mathbf{ms}	8,7
(721)	184,05	183.99	m	$\int_{12,4}^{12,4}$
(721)	184,055	100,00		(9,9
(451)	184,86			9,1
(451)	184,86	184,65	m	{9,0
(800)	184,96)			(2,3
(550)	186,96			0,5
(161)	191,89			10,8
(161)	191,89J			[U,U
(602)	200,52	200.49	SS	JU,Z
(602)	200,52J			(3,3
(820)	203,28			0,0
(532)	209,95	209,69	ss	10,4
(532)	209,951	910.00	200.0	(1,0 & A
(460)	211,12	210,99	ms	0,0

Fortsetzung (Tabelle 4)

(hkl)	$\sin^2 \theta \cdot 10^3$ ber.	$\sin^2 \theta \cdot 10^3$ beob.	Int. beob.	Int. ber.
$(\overline{8}11)$ (811) ($\overline{1}52$) (152)	$\begin{array}{c} 213,66\\ 213,66\\ 213,87\\ 213,87\\ 213,87\\ \end{array}$	213,72	SS	$ \begin{cases} 0,7 \\ 0,2 \\ 0,4 \\ 0,0 \end{cases} $
$(\overline{361})$ $(\overline{361})$	215,01 215,01 215,01	214,78	m	${ 4,0 \\ 8,7 }$
$(\overline{4}42)$ (442)	$216,00 \\ 216,00 \}$	216,08	m	$ \begin{cases} {\bf 6,7} \\ {\bf 3,0} \end{cases} $
Tabelle 5. In	nteratomare Ab für	stände und W Pb3GeAl10O20	inkel (in Å	bzw. Grad)
$\begin{array}{c} \hline Pb(1) & O(5) \\ & O(2) \\ \hline Mittelwert 2 \end{array}$	$2,63 \pm 0,08$ (4 $ imes$) 2,52 \pm 0,1 (2 $ imes$) ,59 Å	$\begin{array}{c} Pb(2)O(3) \\O(1) \\O(5) \\O(2) \\O(6) \end{array}$) $\begin{array}{c} 2,58\pm0,\\ 2,30\pm0,\\ 2,81\pm0,\\ 3,25\pm0,\\ 3,10\pm0.\\ \end{array}$	$\begin{array}{c} 08 & (2 \times) \\ 10 \\ 08 & (2 \times) \\ 10 \\ 06 & (2 \times) \end{array}$
AI(1)O(1) O(6)	$1.93 \pm 0.11 (2 \times 1.82 \pm 0.06) (4 \times 1.82 \pm 0.06)$	Mittelwert) Al(2)O(1))O(6) O(4)	2,82 Å $1,92 \pm 0,$ $1,95 \pm 0,$ $1,95 \pm 0,$	$\begin{array}{c} 07 & (2 \times) \\ 07 & (2 \times) \\ 07 & (2 \times) \end{array}$
Mittelwert 1	,86 A	Mittelwert	1,94 Å	
Al(3)O(3) O(2) O(4) O(5)	$\begin{array}{c} 1,68 \pm 0,09 \\ 1,78 \pm 0,07 \\ 1,78 \pm 0,07 \\ 1,90 \pm 0,09 \end{array}$	Al(4)—O(3) —O(4) —O(5) —O(6)	$egin{array}{c} 1,81\pm 0\ 1,74\pm 0\ 1,83\pm 0\ 1,71\pm 0 \end{array}$,08 ,08 ,08 ,06

Mittelwert 1,79 Å

Mittelwert 1,77 Å

O(3) als Brückensauerstoff zweier Tetraeder:

Al(4)-O(3)-Al(3) 148,90

- O(5) als Brückensauerstoff zweier Tetraeder: Al(4)-O(5)-Al(3) 115,86
- O(6) als Brückensauerstoff zweier Oktaeder und eines Tetraeders:

Al(1) - O(6) - Al(2)	101,94
Al(1) - O(6) - Al(4)	118,21
Al(2)-O(6)-Al(4)	132, 61

O(4) als Brückensauerstoff zweier Tetraeder und eines Oktaeders:

Al(3)- $O(4)$ - $Al(2)$	127,08
Al(3) - O(4) - Al(4)	113, 18
Al(2) - O(4) - Al(4)	115,59

Weitere Winkelangaben sind in der Dissertation von Frau H. Vinek, Universität Wien 1969, angegeben.

Abb. 1a. [GeAl₁₀O₂₀]-Gerüst in Richtung [001]

Abb. 1 b. Lage der Kationen Pb, Al(Ge). Große starke Kreise Pb in $z \approx 0$. Große dünne Kreise Pb in $z \approx \frac{1}{2}$. Kleine starke Kreise Al(Ge) in $z \approx 0$. Kleine dünne Kreise Al(Ge) in $z \approx \frac{1}{2}$

Gruppen entsteht. Dabei werden Kanäle parallel zu [001] gebildet, in welche die Bleiatome eintreten. Die Kationen allein sind aus Abb. 1 b zu

H. 1/1970] Die Kristallstruktur von Pb₃GeAl₁₀O₂₀ (Pb₃SiAl₁₀O₂₀) 283

ersehen und liegen, wie schon erwähnt in den Ebenen $z \approx 0$ und $z \approx 0.5$. Die statistische Verteilung von Aluminium und Germanium ist bemerkenswert. Eine solche ist auch für Al und Si in Pb₃SiAl₁₀O₂₀ anzunehmen, weil die überhaupt mögliche zweizählige Punktlage eine oktaedrische und keine tetraedrische Sauerstoff-Umgebung aufweist. Eine oktaedrische Umgebung des Siliciums durch Sauerstoff-Anionen ist zwar nicht völlig ausgeschlossen, aber hier nicht besonders wahrscheinlich.

Abb. 2a. Strukturelement, gebildet durch Oktaeder-Verknüpfung Abb. 2b. Strukturelement, gebildet durch Tetraeder-Verknüpfung

Die gerüstbildenden Strukturelemente gehen aus Abb. 2a und b hervor. Die Tetraeder-Doppelketten bilden eine gewellte Schicht parallel zu (100). Man erkennt daraus auch, daß Tetraeder-Vierergruppen in Sechserringen vereinigt sind. Ein analoges Strukturelement liegt bei mehreren Raumnetz-Strukturen der Silikate vor. Die interatomaren Abstände für Al(Ge)—O (s. Tab. 4) sind für die beiden Koordinationszahlen deutlich verschieden und stehen mit entsprechenden Abständen in anderen Alhaltigen Oxiden in Einklang². Interessant ist die relativ große Häufigkeit von AlO_4 -Tetraedern, die offensichtlich durch Germanium bzw. Silicium in bekannter Weise begünstigt wird, aber auch durch die teilweise kovalenten Pb—O-Bindungen verursacht sein kann.

Die Sauerstoff-Umgebung der Blei-Atome ist wegen der verschiedenen Natur der Kanäle ungleich. Die Blei-Atome der Position 1 sind von einem verhältnismäßig regulären Sauerstoff-Oktaeder umgeben (s. Tab. 5). Die Abstände Pb—O sind 2,52 (2×) und 2,63 (4×) Å. Das

² Internat. Tables X-ray crystallogr. (1962), Vol. III.

zweite Sauerstoff-Polyeder um Blei in der Lage 2 ist wesentlich unregelmäßiger, indem ein sehr kurzer Abstand von 2,30 Å neben zwei Abständen von 2,58 Å und weiteren merklich längeren $[2,87 (2 \times), 3,10 (2 \times) \text{ und}$ 3,25 Å] auftritt. Die ersten drei kurzen Abstände Pb—O sind mit jenen drei kurzen Abständen im Mineral Larsenit PbZnSiO₄ gut vergleichbar³. Ähnlich kurze kovalente oder teilweise kovalente Pb—O-Abstände sind an sich von den beiden PbO-Modifikationen selbst bekannt, die zusammen mit sehr niedrigen Koordinationen (Pb—O-Kettenbildung im gelben PbO und quadratische Pyramide im roten PbO) einhergehen. Im Zusammenhang mit den sich deutlich unterscheidenden Sauerstoffpolyedern um die beiden Sorten von Bleiatomen sei auf deren erheblich verschiedenes Verhalten hinsichtlich des Temperaturfaktors für Pb (1) und Pb (2), s. Tab. 3, hingewiesen. Der Temperaturfaktor für die fast reguläre oktaedrische Umgebung ist mehr als das vierfache von jenem für Pb (2).

Es sei noch bemerkt, daß eine weitere, GeO_2 -reiche Kristallart im System: PbO—Al₂O₃—GeO₂ strukturchemisch mit der Rutilform von GeO₂ in engem Zusammenhang steht. Es ist auffällig, daß die GeO₂reichere Verbindung die oktaedrischen Strukturelemente stärker bevorzugt als Pb₃GeAl₁₀O₂₀. Dies kann mit dem verschiedenen Verhältnis PbO/(Al₂O₃ + GeO₂) zusammenhängen.

Herrn Dr. R. Fischer, Institut für Mineralogie und Kristallographie der Universität, danken wir für die Überlassung der Programme. Der Fa. Owens-Illinois danken wir für ihre Hilfe.

³ C. T. Prewitt, E. Kirchner und A. Preisinger, Z. Krist. 124, 115 (1967).

Eigentümer: Österreichische Akademie der Wissenschaften, Dr.-Ignaz-Seipel-Platz 2, A-1010 Wien. — Herausgeber: Österreichische Akademie der Wissenschaften, Dr.-Ignaz-Seipel-Platz 2, A-1010 Wien, und Verein Österreichischer Chemiker, Eschenbachgasse 9, A-1010 Wien. — Verlag: Springer-Verlag, Mölkerbastei 5, A-1010 Wien. — Für den Textteil verantwortlich: Prof. Dr. Friedrich Kuffner, Währinger Straße 38, A-1090 Wien. — Für den Anzeigenteil verantwortlich: Alois Hailwax, Paracelsusgasse 8, A-1030 Wien. — Druck: Adolf Holzhausens Nachfolger, Kandigasse 19-21. A-1070 Wien

Printed in Austria